On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors

نویسندگان

  • Lieven De Lathauwer
  • Bart De Moor
  • Joos Vandewalle
چکیده

In this paper we discuss a multilinear generalization of the best rank-R approximation problem for matrices, namely, the approximation of a given higher-order tensor, in an optimal leastsquares sense, by a tensor that has prespecified column rank value, row rank value, etc. For matrices, the solution is conceptually obtained by truncation of the singular value decomposition (SVD); however, this approach does not have a straightforward multilinear counterpart. We discuss higherorder generalizations of the power method and the orthogonal iteration method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality reduction in higher - order signal processing and rank - ( R 1 , R 2 , . . . , RN ) reduction in multilinear algebra

In this paper we review a multilinear generalization of the singular value decomposition and the best rank-(R1, R2, . . . , RN) approximation of higher-order tensors. We show that they are important tools for dimensionality reduction in higher-order signal processing. We discuss applications in independent component analysis, simultaneous matrix diagonalization and subspace variants of algorith...

متن کامل

Cross: Efficient Low-rank Tensor Completion

The completion of tensors, or high-order arrays, attracts significant attention in recent research. Current literature on tensor completion primarily focuses on recovery from a set of uniformly randomly measured entries, and the required number of measurements to achieve recovery is not guaranteed to be optimal. In addition, the implementation of some previous methods are NP-hard. In this artic...

متن کامل

A Grassmann-Rayleigh Quotient Iteration for Dimensionality Reduction in ICA

We derive a Grassmann-Rayleigh Quotient Iteration for the computation of the best rank-(R1, R2, R3) approximation of higher-order tensors. We present some variants that allow for a very efficient estimation of the signal subspace in ICA schemes without prewhitening.

متن کامل

Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem

There has been continued interest in seeking a theorem describing optimal low-rank approximations to tensors of order 3 or higher, that parallels the Eckart–Young theorem for matrices. In this paper, we argue that the naive approach to this problem is doomed to failure because, unlike matrices, tensors of order 3 or higher can fail to have best rank-r approximations. The phenomenon is much more...

متن کامل

Best Rank-One Tensor Approximation and Parallel Update Algorithm for CPD

A novel algorithm is proposed for CANDECOMP/PARAFAC tensor decomposition to exploit best rank-1 tensor approximation. Different from the existing algorithms, our algorithm updates rank-1 tensors simultaneously in-parallel. In order to achieve this, we develop new all-at-once algorithms for best rank-1 tensor approximation based on the Levenberg-Marquardt method and the rotational update. We sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2000